PBHMDA: Path-Based Human Microbe-Disease Association Prediction
نویسندگان
چکیده
With the advance of sequencing technology and microbiology, the microorganisms have been found to be closely related to various important human diseases. The increasing identification of human microbe-disease associations offers important insights into the underlying disease mechanism understanding from the perspective of human microbes, which are greatly helpful for investigating pathogenesis, promoting early diagnosis and improving precision medicine. However, the current knowledge in this domain is still limited and far from complete. Here, we present the computational model of Path-Based Human Microbe-Disease Association prediction (PBHMDA) based on the integration of known microbe-disease associations and the Gaussian interaction profile kernel similarity for microbes and diseases. A special depth-first search algorithm was implemented to traverse all possible paths between microbes and diseases for inferring the most possible disease-related microbes. As a result, PBHMDA obtained a reliable prediction performance with AUCs (The area under ROC curve) of 0.9169 and 0.8767 in the frameworks of both global and local leave-one-out cross validations, respectively. Based on 5-fold cross validation, average AUCs of 0.9082 ± 0.0061 further demonstrated the efficiency of the proposed model. For the case studies of liver cirrhosis, type 1 diabetes, and asthma, 9, 7, and 9 out of predicted microbes in the top 10 have been confirmed by previously published experimental literatures, respectively. We have publicly released the prioritized microbe-disease associations, which may help to select the most potential pairs for further guiding the experimental confirmation. In conclusion, PBHMDA may have potential to boost the discovery of novel microbe-disease associations and aid future research efforts toward microbe involvement in human disease mechanism. The code and data of PBHMDA is freely available at http://www.escience.cn/system/file?fileId=85214.
منابع مشابه
A novel approach for predicting microbe-disease associations by bi-random walk on the heterogeneous network
Since the microbiome has a significant impact on human health and disease, microbe-disease associations can be utilized as a valuable resource for understanding disease pathogenesis and promoting disease diagnosis and prognosis. Accordingly, it is necessary for researchers to achieve a comprehensive and deep understanding of the associations between microbes and diseases. Nevertheless, to date,...
متن کاملMicroPattern: a web-based tool for microbe set enrichment analysis and disease similarity calculation based on a list of microbes
The microbiota colonized on human body is renowned as "a forgotten organ" due to its big impacts on human health and disease. Recently, microbiome studies have identified a large number of microbes differentially regulated in a variety of conditions, such as disease and diet. However, methods for discovering biological patterns in the differentially regulated microbes are still limited. For thi...
متن کاملPredicting disease-related genes by path-based similarity and community structure in protein-protein interaction network
Network-based computational approaches to predict unknown genes associated with certain diseases are of considerable significance for uncovering the molecular basis of human diseases. In this paper, we proposed a kind of new disease-gene-prediction methods by combining the path-based similarity with the community structure in the human protein-protein interaction network. Firstly, we introduced...
متن کاملComputational prediction of human disease-related microRNAs by path-based random walk
MicroRNAs (miRNAs) are a class of small, endogenous RNAs that are 21-25 nucleotides in length. In animals and plants, miRNAs target specific genes for degradation or translation repression. Discovering disease-related miRNA is fundamental for understanding the pathogenesis of diseases. The association between miRNA and a disease is mainly determined via biological investigation, which is compli...
متن کاملNetwork-based Phenome-Genome Association Prediction by Bi-Random Walk
MOTIVATION The availability of ontologies and systematic documentations of phenotypes and their genetic associations has enabled large-scale network-based global analyses of the association between the complete collection of phenotypes (phenome) and genes. To provide a fundamental understanding of how the network information is relevant to phenotype-gene associations, we analyze the circular bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017